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The steady, two-dimensional, isothermal flow of an incompressible Newtonian fluid in 
a semi-infinite channel is modelled using a finite-element method. The flow is driven by 
injecting two identical jets through symmetrically placed slit-like nozzles into the 
otherwise closed end of the channel. Multiple steady-state solutions are observed for 
Reynolds numbers greater than 18.8, where seven solutions have been found. Six of 
these solutions exist on branches that are not connected to the Stokes flow solution via 
continuation in the Reynolds number. Further bifurcations of these solutions has 
led to the discovery of 17 solutions at a Reynolds number of 40. A two-dimensional 
linear stability analysis of the solution branches shows that for Reynolds numbers in 
the range of 18.8 to 26.8 there are three stable solutions. One solution is symmetric 
about the channel centreline while the other two stable solutions are a pair of mirror- 
image asymmetric flows. For Reynolds numbers in the range 26.8 to 40, there are four 
known stable solutions consisting of two asymmetric solutions and their mirror- 
images. 

1. Introduction 
As one considers the properties of steady solutions to symmetrically formulated 

boundary-value problems, there are two properties that one might intuitively 
anticipate. The first is that the solutions will possess the same symmetry as the problem 
formulation. The second is that there will be a unique symmetric solution. Clearly, 
both conclusions are true for linear problems. However for nonlinear problems, e.g. 
Navier-Stokes flows, it is known that neither is necessarily true. Flow through a 
symmetric sudden expansion in a channel is a well-known example of a flow where the 
stream function can violate the symmetry of the problem formulation. Fearn, Mullin 
& Cliffe (1990) present computational results showing that at low flow rates, a steady 
symmetric flow will occur. However, as the flow rate is increased, an asymmetric flow 
develops. The asymmetric flow is associated with the presence of a symmetry-breaking 
bifurcation at a critical flow rate. In this same work, Fearn et al. demonstrate 
experimentally and computationally that instead of a sharp transition from a 
symmetric flow to an asymmetric one, small imperfections in the flow device cause the 
transition to be more gradual. At very large flow rates, the flow is observed to become 
time-dependent . 

The infinitely long Taylor-Couette cell flow is a now-classic example of a 
symmetrically formulated problem having multiple solutions that obey the symmetries 
of the problem formulation. For low values of the Taylor number, a shear flow is 
observed. Above the critical Taylor number, roll cells can be observed. As with the 
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FIGURE 1. Sketch of the computational domain. 

problem formulation, both the shear flow and the roll cells were axisymmetric; see for 
example Benjamin & Mullin (1982). 

The present work considers a steady flow that has both several symmetric solutions 
and a multitude of asymmetric solutions. As in the work of Fearn et al. the flow is in 
a semi-infinite channel. However, instead of a single jet flowing into an expanded 
channel, the flow here results from the injection into the channel of two jets placed 
symmetrically between the channel centreline and the channel walls. (See figure 1.) 

The motivation for considering this problem stems from work aimed at 
understanding experiments conducted by Fruman, Perrot & Bouguechal, (1984) who 
made die swell measurements by injecting a jet of a test fluid into an immiscible density- 
matched bath. For reference, a jet of a fluid with known rheological properties was 
injected alongside the jet of test fluid. The problem taken up here is a considerably 
simplified model of their experiments. That is, all three fluids (that of the bath, the test 
jet, and the reference jet) are considered to be the same fluid. Furthermore, the model 
is two-dimensional, whereas the experiment was clearly three-dimensional. Despite 
these many simplifications, it is hoped that this model will capture the essential nature 
of the interactions between the test and reference jets. 

This problem possesses a large number of solutions for Reynolds numbers greater 
than 18.8. Thus, to control the scope of this work, attention has been largely restricted 
to Reynolds numbers in the range 0 to 40. 

A detailed description of the problem and numerical methods is presented in $2. The 
results and conclusions are contained in $$3 and 4. 

2. Problem description and numerical methods 
This section starts with a description of the problem geometry, equations, and 

boundary conditions. This is followed by a brief outline of the numerical procedures 
employed to solve the problem and to study the linear stability of the solutions. The 
section ends with the definition and discussion of two functionals used to characterize 
the solutions. 

2.1, Problem description 
Consider the steady two-dimensional isothermal incompressible flow in a semi-infinite 
channel driven by injecting two identical jets through nozzles in the closed end of the 
channel. (See figure 1.) A Cartesian coordinate system is established with the abscissa 
and ordinate coincident with the channel centreline and the closed end of the channel, 
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respectively. The upper and lower channel walls are located at y = f 11. The 
centrelines of the unit-width upper and lower inlet nozzles correspond to the lines 
y = f 5.5. The governing equations are 

u = O  at 

ReuqVu = V -  T,  

v - u  = 0, 

x > 0, (yI = 1 1  

x = 0, 6 < (yI < 1 1  

< x = O ,  l y ( 6 5  

x<o,  y = f 5  

x < O ,  y = + 6 .  

where u = ui+ vj is the velocity vector, i and j denote unit vectors in the x- and y -  
directions respectively, T = - p / +  [Vu+ ( V U ) ~ ]  is the stress tensor, p is the pressure, 
and / is the identity tensor. The Reynolds number, Re = Q/2v ,  is based on the total 
flow rate in the channel, Q,  and the kinematic viscosity of the fluid, v. 

Equations (1) and (2) are solved subject to the following boundary conditions. The 
no-slip condition is imposed along the nozzle walls, at the closed end of the channel, 
and along the channel walls, 

The velocity profile at the inflow of each inlet nozzle is parabolic: 

(3) 

Here QNozzle is the flow rate through the nozzle, n is the outward-pointing unit normal 
to the computational domain, and 7 is the ordinate of a local coordinate system with 
axes coincident with the centreline and inflow plane of each nozzle. (See figure 1). 
Except in the special circumstances described below, the flow rates through the two 
nozzles are equal. Consequently, Q = 2QNozzle and so Re = QNozzle/v.  

To complete the specification of the associated computational problem, the extent of 
the computational domain is restricted by locating the inflow planes of the inlet nozzles 
at x = - 10 and the outflow plane of the channel at x = 500. Finally, the normal 
component of the traction vector is required to vanish at the outflow plane of the 
computational domain : 

T : n = O  at x =  500. (6) 

2.2. Numerical methods 
Equations (1) and (2) are solved numerically using the Galerkin finite-element method. 
The velocity components are interpolated on each nine-node quadrilateral element 
using biquadratic basis functions. To achieve element-wise incompressibility, a linear- 
discontinuous basis is used to interpolate the pressure. 

The computational domain is discretized so that the locations of all elements and 
nodes are symmetric with respect to the channel centreline. Solutions have been 
computed on six increasingly refined meshes, labelled Ml-M6. Table 1 shows the 
number of elements, nodes and equations associated with each of the meshes. To 
minimize the computational burden while ensuring accurate solutions, the elements are 
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Mesh Elements Nodes Equations 

M1 700 2961 8 022 
M2 1572 6 521 17 770 
M3 2 800 11 521 31 442 
M4 6 300 25 68 1 70 262 
M5 8 582 34891 95 528 
M6 11 216 45 509 124 666 

TABLE 1. Discretization parameters 

concentrated near the closed end of the channel and near the channel walls. (See figure 
2.) For each mesh, approximately 50 O/O of the elements are concentrated in the region 
0 6 x < 50. 

Except for a high-Re turning point that vanished with grid refinement, the qualitative 
aspects of the structures of the flows and of the solution-space bifurcation diagram were 
consistent across all meshes. While there were significant quantitative changes in the 
locations of bifurcation points when refining from M1 to M2 and from M2 to M3, the 
bifurcation diagrams for meshes M3 and M4 were nearly coincident. All results 
presented here were computed on either mesh M3 or M4. Meshes M5 and M6 were 
used to make a quantitative assessment of the accuracy of solutions computed on 
meshes M3 and M4. Accordingly, the quantity Y-, to be defined shortly, was 
computed using meshes M3, M4, M5, and M6 at Re = 40 for all solution branches. For 
any branch, Y- varied by less than 1 YO between any of meshes M3-M6. 

The solution multiplicities reported below are a consequence of the nonlinearity of 
the momentum equations at non-zero Reynolds numbers. To ensure that the observed 
nonlinear behaviour was not attributable to a particular numerical treatment of the 
inertial terms, two different techniques were used to discretize the inertial terms. For 
most of the computations the inertial terms in (1) were discretized as follows: 

Re wu- Vu dA, s, (7) 

where w is both the weighting function and the velocity basis function, 0 denotes the 
computational domain, and dA is a differential area. To gain confidence that the results 
were not an artifact of the particular numerical procedure used to discretize the 
nonlinear terms, some of the calculations were repeated using the divergence form of 
the inertial terms 

Re(V euu). (8) 

Use of the divergence theorem yields the following Galerkin formulation of (8): 

Re wV-uudA = -Re (Qw.u)udA+Re wu-nuds, (9) s, JQ s, 
where Xl! denotes the computational domain boundary and ds is a differential 
arclength. In 53.3 it will be shown that the computations using (9) result in a 
bifurcation diagram that is essentially identical to those obtained using (7). It is 
therefore believed that the results presented here are unlikely to be a consequence of 
errors related either to numerical discretization or to the technique used to discretize 
the nonlinear terms of the momentum equations. 
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FIGURE 2. The computational mesh M1. Only the portion of the mesh for x < 150 is shown. 
Approximately 50 % of the elements are located in the region x < 50. 

Discretization of (1) and (2) yields a coupled set of nonlinear algebraic equations of 
the form 

R(X) = 0. (10) 

Here R is the vector of residual equations and X is the vector of unknowns. These 
equations were solved iteratively using Newton’s method or Newton-like methods. 
Gaussian elimination via the frontal method (Duff, Erisman & Reid 1989) was used to 
solve the associated sparse non-symmetric linear system of equations 

The convergence criteria were that both IIRJJ and IlAXll/llXll be less than where 
1 1  - 1 1  denotes an L, norm. 

First-order and arclength parametric continuation schemes (Keller 1977) were used 
both to reduce the aggregate cost of obtaining solutions and to facilitate solution 
tracking in the vicinity of bifurcation points. 

In any problem where bifurcations are observed, questions of stability arise. 
Accordingly, the associated two-dimensional linear stability problem has been solved 
for the leading eigenmodes and eigenvalues. The stability analysis considers two- 
dimensional disturbances of the form X(x ,  t )  = X,,(x) + Xl(x ,  t) ,  where x is the spatial 
position vector, t denotes time, X,, is the steady base-state solution and Xl(x,  t )  is a 
time-dependent disturbance quantity. In the usual way, it is assumed that X ,  can be 
represented as Xl(x,  t )  = 21(x) cut, where the spatial dependence of the eigenfunction, 
Z1, is resolved using finite-element basis functions and the eigenvalue, g, is possibly 
complex. This formulation leads to a large sparse generalized non-symmetric 
eigenvalue problem. Since one is principally interested in the most dangerous 
eigenmodes, an Arnoldi-based scheme (Sorensen 1992) was used to compute a few of 
the leading eigenvalues. Since the eigenvalue calculations are rather expensive, the 
stability calculations could only be performed on meshes M1 and M2. Results are 
presented for calculations on mesh M2. Because the qualitative features of the flow, as 
well as the sign-change behaviour of the Jacobian determinant, are consistent across all 
grids, it is expected that the stability findings are qualitatively correct. 

2.3. Characterizing functionals 

To assist in characterizing solution branches and bifurcation points, it is useful to 
define a simple scalar measure of the flow. Two measures, Y+ and Y-, are defined as 
follows. Let @(x,y) be the computed stream function, with @(O,O) = 0. Let @ J x , y )  = 
:(y/h-+(y/h)3) be the stream function for Poiseuille flow in a channel, where h is the 
channel half-width (here, h = 11). Then, with L denoting the computational domain 
length, 
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The quantities Y+ and Y- have several important properties. First, there will be no 
contribution to Y+ or Y- from regions where the flow is fully developed. Accordingly, 
if the computational domain is sufficiently long, then both Y+ and Y- will be 
independent of the length of the computational domain. Therefore, by evaluating Y+ 
and Y- for domains of different length, one can determine when the computational 
domain is sufficiently long. Secondly, Y+ are measures of a physical property of the 
flow. Consequently, one should anticipate being able to compute grid-convergent 
values for Y+. Third, Y+ is only non-zero for asymmetric flows. Thus, any transition 
between Y+ 0 and Y+ > 0 is a sure indication of a symmetry-breaking bifurcation. 
Finally, flows that differ only by reflection about the centreline of the channel, i.e. 
mirror-image flows, are mapped to the same values of Y+ and Y-. 

3. Results 
As will be shown, the problem considered here possesses several solutions for all 

values of the Reynolds number greater than 18.8. Each solution can be categorized by 
whether or not it is accessible via continuation in the Reynolds number starting with 
the Stokes flow solution. The branches of solutions accessible by continuation in Re 
starting with the Re = 0 solution are described first. This is followed by a discussion 
of a novel geometric continuation procedure used to access solutions not connected to 
the Stokes flow solution. Next, the bifurcation structure of each solution branch is 
explored as the Reynolds number is varied. It is then shown that a second form of 
geometric continuation will separate all known solution branches into two families of 
branches. It will be argued that this second form of geometric continuation 
systematically reveals all members of each of the two families of branches. As a 
consequence, several new branches of solutions are uncovered. 

Throughout this section, the topology of the stream function will be illustrated by 
plotting the critical points (minima, maxima, and saddle points) of the stream function 
and the streamlines associated with critical points, separation points, and reattachment 
points. So that the reader can compare the various solution branches, plots of stream 
functions with critical points are shown for each branch at Re = { O ,  10,20, 25,30,40}, 
if the branch exists at that Reynolds number. 

3.1 .  Solutions connected to the Stokesjow solution 
Starting from the symmetric stable and unique Stokes flow solution, a set of solutions 
is obtained by first-order continuation in Re. This set of solutions is called branch I. 
Figure 3 shows stream-function critical points plots for solutions on branch I with 
Reynolds numbers in the range 0 to 40. As noted earlier, the stream function datum 
is set to 0 at the midpoint of the closed end of the channel, i.e. +(O, 0) = 0. Accordingly, 

Clearly, branch I is a set of symmetric solutions. At the lowest Reynolds numbers, 
the dominant feature in the stream-function topology is the presence of the 
recirculation regions in the corners of the channel. As the Reynolds number is 
increased, a pair of centreline-bordering recirculation regions develops. The strength of 
these centreline-boarding recirculation regions, as measured, for example, by the 
difference between the values of the stream function at the dividing streamline and the 
recirculation centre, increases with Re. For high enough Re, the flow in these regions 
is essentially inviscid. At Re z 24.5 another pair of recirculation regions develops along 
the upper and lower channel walls approximately one channel-width downstream of 
the closed end of the channel. If the Reynolds number is sufficiently high, the location 

+(x 2 0,y  = i- 11) = 2 1. 
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FIGURE 3. Stream-function critical points and contours on branch I.  In this and subsequent similar 
figures, minima are denoted by filled circles, maxima by open circles, and saddle points by diamonds. 

of the downstream reattachment point of these downstream recirculation regions is 
observed to grow approximately linearly with increases in Re. 

3.1.1. Asymmetric solutions 
As Re was increased along Branch I, it was noted that the determinant of the 

Jacobian matrix of the discretized nonlinear equations changed sign in the interval 
26 < Re < 28, and again in the interval 38 < Re < 40. This change in the sign of the 
Jacobian determinant, together with the continued success of first-order continuation, 
signalled that two bifurcation points had been encountered, neither of which were 
turning points. This suggested that the bifurcations may be symmetry-breaking 
bifurcations. 

To access the alleged asymmetric solutions, the following physically motivated 
procedure was used. Starting with a symmetric solution at a Reynolds number just 
above the value corresponding to the approximately located bifurcation point, the flow 
rates in the two inlet nozzles were made unequal. This was done in a fashion that 
preserved the total channel flow rate, and thus the channel Reynolds number. With the 
flow rates in the two nozzles unequal, the Reynolds number was increased to 40 using 
first-order continuation. At Re = 40, the inlet-nozzle flow rates were rebalanced, thus 
restoring a symmetric problem formulation, and an asymmetric flow was observed. 
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FIGURE 4. Bifurcation diagram showing the solution branches connected to the Stokes flow solution 
by continuation in Re, branches I, Ia, and Ib. Since branch I is symmetric, Y+ = 0. Thus, there is no 
curve for branch I in the bottom plot. Bifurcation points are circled. 

Starting with the asymmetric Re = 40 solutions, each asymmetric branch was tracked 
back to the bifurcation point on branch I by lowering Re, again using first-order 
continuation. 

An alternative, more mathematically motivated, procedure for accessing the 
asymmetric branches would be to add a multiple of the null vector of the Jacobian 
matrix to the symmetric solution at the bifurcation point. The mathematical foundation 
for this type of procedure can be found in the work of Werner & Spence (1984). 

These two asymmetric branches are labelled Ia and Ib in figure 4. The bifurcation 
of branch Ia from branch I is evident in figure 4, where a new branch is seen to fork 
off the branch I curve in the plot of Y- versus Re, at Re = 26.85. In the plot of Y+ 
versus Re, a curve is seen to emanate from the abscissa at the same Reynolds number, 
indicating that the flow is asymmetric. The features in figure 4 associated with the 
bifurcation of branch Ib are similar, with the bifurcation occurring instead at Re = 
39.0. (Note, the solutions computed on branches Ia and Ib each represent one of a pair 
of asymmetric mirror-image flows. The mirror-image of these flows can be obtained by 
repeating the above-described procedure while reversing the choice of which of the two 
inlet nozzles has the greater flow rate.) 

The stream-function critical point plots for the solutions on branch Ia at Re = 30 
and 40 and on branch Ib at Re = 40 are shown in figure 5. Notice that the topology 
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Re = 40 
I w- 

FIGURE 5. Stream-function critical point plots for branches Ia(a) and Ib(b). 

FIGURE 6. Detailed view of the streamline that divides the flow issuing from the lower nozzle for the 
branch Ia Re = 40 solution. Since at the saddle point $ = -0.21 1, roughly 21 % of the fluid leaving 
the lower nozzle travels a serpentine path towards the saddle point, then back towards the rear 
channel wall before finally heading downstream. 

of branch Ia is clearly different from that of branch I. In particular, compare the 
streamlines connected to the saddle point near the middle of the channel at Re = 40. 
On branch I this streamline, a contour of $ = 0, terminates at the lower corner of the 
upper nozzle, the upper corner of the lower nozzle and at the midpoint of the closed 
end of the channel. In short, it separates the centreline-bordering recirculation regions 
from the flow exciting the nozzles. The situation for branch Ia, shown in detail in figure 
6 ,  is completely different. At Re = 40 the streamline associated with the saddle point is 
a contour of $ = -0.21 1. As a consequence, the streamline enters the bottom nozzle, 
dividing the flow from the nozzle into two streams. The lower stream follows a path 
much like the path followed by fluid leaving the lower nozzle in the branch I solution. 
The upper stream follows a more tortuous path. The fluid exits the nozzle and moves 
downstream towards the saddle point. Then, it reserves direction and heads towards 
the rear channel wall. At the channel wall the stream flows vertically upwards to the 
upper nozzle before finally heading downstream, once again flowing past the saddle 
point. This feature of the stream-function topology is not merely a curiosity nor is it 
a plotting error. As indicated by the value of the stream function, the flow rate in this 
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FIGURE 7. The most dangerous eigenvalues for branch I. The eigenvalues are purely real in the range 
shown. Modes 2 and 3 coalesce to form a complex-conjugate pair near Re = 49. Mode 3 becomes 
purely real near Re = 29 owing to the coalescence of a complex-conjugate pair of eigenvalues. 

stream constitutes more than 20 YO of the total flow leaving the lower nozzle at Re = 
40. Furthermore, it will be shown that it is branch Ia and not branch I that is the stable 
flow for Re > 26.85. 

While most of this work focuses on flows for Re < 40, exploratory (but grid-refined) 
calculations were made for Re up to 105. These calculations revealed additional 
symmetry-breaking bifurcations of branch I in the ranges 46 < Re < 47,60 < Re < 61, 
80 < Re < 81, and 104 < Re < 105. Thus, the pattern of repeated bifurcations of 
branch I appears to persist as the Reynolds number is increased. However, there is no 
apparent regularity in the spacing of the bifurcation points. 

3.1.2. Linear stability analysis 

The associated two-dimensional linear stability problem has been solved for 
the most dangerous eigenmodes. Branch I is stable for Re < 26.85. In the range 
26.85 < Re < 40, branch Ia is stable, whereas branch I is unstable to a purely real 
eigenmode. At the bifurcation point of branch Ib, branch I becomes unstable to a 
second subdominant purely real eigenmode. Branch Ib is unstable to a real eigenmode. 

Figure 7 shows the most dangerous eigenvalues of branch I as a function of the 
Reynolds number. In the range 30 d Re d 49, the fastest growing modes are purely 
real. As expected, one eigenmode becomes unstable at the Reynolds numbers 
corresponding to each of the first three symmetry-breaking bifurcations of branch I. 
Note that the eigenmode associated with the bifurcation of branch Ia remains the most 
dangerous eigenmode, over the explored range of Re. The slowest growing of the three 
modes, labelled mode 3 in figure 7, results from the coalescence of a complex-conjugate 
pair just below Re = 30. Similarly, near Re = 49, the eigenvalues of the two 
subdominant modes, modes 2 and 3, coalesce to form a complex-conjugate pair of 
eigenvalues. Figure 8 shows contours of the two components of velocity for each of the 
two fastest-growing eigenmodes, modes 1 and 2, near the Reynolds number where each 
eigenmode becomes unstable. Consistent with the requirements for a symmetry- 
breaking bifurcation, each eigenmode is antisymmetric with respect to reflection about 
the channel centreline. That is to say, the symmetry of each velocity component is 
opposite to that found in the base-state flow. Thus, u of the eigenmode is an odd 
function of y ,  while z, of the eigenmode is an even function of y .  
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FIGURE 8. Contours of the velocity components of the two most dangerous eigenmodes of branch I 
near the Reynolds number where the mode becomes unstable. The zero contour is denoted by a solid 
line, positive ----, and negative by ----. The contours of u are spaced at intervals of 0.005, while 
u contours are separated by 0.0025. (a) Mode 1 ,  Re = 27; (b) mode 2, Re = 39. 

(4 

FIGURE 9. The three symmetric solutions at Re = 25. (a) Branch I, (b) branch 11, (c) branch 111. 
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Finally, consideration of figures 3 and 4 together demonstrates that qualitative 
changes in the stream-function topology do not result in simultaneous changes in the 
stability of the flow nor in the occurrence of bifurcations. For example, branch I 
becomes unstable at Re = 26.85 without a qualitative change in the stream-function 
topology. On the other hand, the development of new recirculation regions along the 
upper and lower walls near Re = 24.5 does not coincide with a change in stability. This 
is not to say that qualitative changes in the stream-function topology do not ultimately 
play some role in changing the stability characteristics of the flow. 

3.2. The existence of other branches 
In the early stages of this study, preliminary calculations were made in which the flow 
was assumed to be symmetric with respect to the channel centreline. As a consequence, 
the computational domain consisted of only the lower half of the channel. In those 
calculations, the inflow nozzles were also absent. Instead, the jets were assumed to 
enter the channel with a perfectly parabolic velocity profile. Again, starting with the 
Stokes flow solution, branch I was tracked via first-order continuation in the Reynolds 
number. Unlike the full problem, no bifurcations were detected until Re z 325, where 
a turning point was encountered, and the Reynolds number could be increased no 
further. Using arclength continuation, the turning point was rounded to a new 
symmetric branch, branch 11. This branch was tracked down to a Reynolds number 
near 19, where another turning point was discovered. Rounding this turning point led 
to as third symmetric solution branch, branch 111. The Reynolds number was increased 
along this third branch to beyond Re = 400 without finding any additional turning 
points. 

The three symmetric solutions at Re = 25 (computed on the full problem domain 
with inlet nozzles) are shown in figure 9. In contrast to solutions on branch I, where 
the flow exiting the nozzles turns towards the nearest channel wall, solutions on 
branches I1 and I11 are characterized by fluid turning towards the channel centreline 
as it exits the nozzles. In addition, the combination of corner vortices and downstream 
wall-attached recirculation regions seen on branch I are replaced by a pair of large 
recirculation regions. Each of these recirculation regions occupies all of the channel 
between the nozzle and the nearest channel wall, and extends downstream to roughly 
the same location as the reattachment point of branch I downstream vortices. Notice 
that on branch 111, these recirculation regions contain a figure-eight streamline. As 
evidenced by the unequal size of the two lobes of the figure-eight, the saddle point and 
second extrenum form at a cusp-like point on a streamline surrounding the initial 
extremum, as opposed to, for example, the initial extremum splitting into two extrema 
and a saddle point. This appears to be the standard mechanism for critical point 
generation inside of recirculation regions. 

In consideration of the work of Acrivos & Schrader (1982), where the effects of 
varying inflow conditions for high-Re flow into a planar symmetric expansion were 
examined, it was decided to recompute the symmetric solutions to the present problem 
using a computational domain that had an inflow nozzle. The purpose of the nozzle 
was to provide a length over which the velocity profile could relax from parabolic to 
some more realistic condition before entering the channel. 

Figure 10 shows the deviation of each component of velocity from a parabolic profile 
at x = 0 for the lower nozzle of the full problem at Re = 40 on branch I. The 
components of the dimensionless deviation velocity are defined as Au = 
~ ~ ~ ~ ~ ~ ~ ~ ~ - 6 ( 1 / 4 - ~ ~ )  and Av = vComputed. Note that both Au and Av are non-zero. 
Moreover, Av is negative over the lower 80 O/O of the nozzle width, indicating that most 
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FIGURE 10. Deviation of each component of velocity from a fully developed parabolic profile at the 
exit of the lower inlet nozzle on branch I at Re = 40. The discontinuities in the slopes of the velocity 
profiles occur at element boundaries and are therefore a reflection of the discretization. 

of the flow is turning towards the lower channel wall. This is clearly contrary to the 
purely horizontal entrance flow obtained by specifying a parabolic velocity profile. 
(The discontinuties in the slopes of the velocity components are a manifestation of the 
discretization.) The deviation from a parabolic velocity profile is a consequence of 
strong centreline-bordering recirculation near the closed end of the channel. The 
strength of this recirculating region, and therefore presumably the magnitude of the 
deviation of the inlet velocity profile, increases as the Reynolds number is increased. It 
is therefore perhaps not surprising that the turning point on branch I at Re z 325 was 
no longer present when an inlet nozzle was added to the computational domain of the 
symmetric problem. As a result, it was impossible to access the other two symmetric 
solution branches via continuation in Reynolds number. Still, there was evidence of the 
existence of two other symmetric branches. Consequently, alternative continuation 
schemes were sought. 

3.3. Symmetric nozzle angle variation 
The other symmetric solution branches were found to be accessible by changing the 
angle of the inflow nozzles. The motivation for this tactic stems from the observation 
that the fluid turns towards the channel wall as it enters the channel for flows on branch 
I, whereas on branch I1 the fluid turns towards the channel centreline as it enters the 
channel. Hence, it was hoped that if Re > 19, a region of Re where three symmetric 
solutions were believed to exist, one might be able to selectively access the three 
symmetric solution branches by aiming the inflow nozzles either towards the centreline 
or towards the channel walls. 

For convenience, the continuation technique is described in terms of the full 
problem. Referring to figure 1, let at and ab be the counterclockwise angles, measured 
in degrees, between the axis of the top or bottom nozzle and the channel centreline. The 
axis of a nozzle is defined to be the line between the midpoint of the inflow plane of 
the nozzle and the midpoint of the associated channel inflow slit. Note that except 
when the nozzles are horizontal, there is a narrowing of the width of the nozzle between 
the nozzle inflow plane and the channel inflow slit. For each nozzle, this is a geometric 
consequence of requiring the channel inflow slit to have unit width while also requiring 
the nozzle inflow plane to be of unit width and perpendicular to the nozzle axis. The 
width of the nozzle at the channel inflow slit is given approximately by the cosine of 
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FIGURE 1 1. Bifurcation diagram for symmetric nozzle angle variation at Re = 20. Bifurcation points 
are distinguished from coincidental branch crossings by the presence of a circle. The results of 
discretizing the inertial terms using (7) are shown using a solid line while the diamonds are the results 
from when (9) was used. 

the nozzle inclination angle. To maintain the geometric symmetry, the nozzle angles are 
restricted such that -at = ab. For notational convenience, the subscript of a is 
dropped, letting a = ab. Finally, the description of the location of the nozzle walls in 
the specification of the no-slip condition (3) is modified appropriately. 

Returning to the full-domain problem, solutions on branch I have been computed 
and now solutions are sought on symmetric branches I1 and 111. Following the strategy 
learned in the preliminary work on the half-channel problem, a was first increased 
starting with the branch I Re = 20 solution. Increasing a amounts to pointing the 
nozzles towards the channel centreline. Consequently, the flow out of the nozzles is 
directed towards the channel centreline, consistent with the stream-function topology 
on branches I1 and 111. Figure 11 is the bifurcation diagram resulting from this 
geometric continuation procedure. As expected, by directing the nozzles toward the 
channel centreline, a turning point, i.e. a different solution branch, is encountered at 
a = 11.2'. Rounding this turning point leads to symmetric solution branch 111. As a 
is lowered back towards zero, the Jacobian determinant was observed to change sign 
at about a = 3.96', once again signalling the presence of a branch of asymmetric 
solutions. Further decreases in a led to a second turning point at a = - 1.15', and thus 
to the third symmetric branch of solutions, branch 11. Using symmetry-breaking 
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techniques similar to those described above, the asymmetric solutions associated with 
the Jacobian determinant changing sign were mapped out. These branches are labelled 
IV and V. Branch IV results from a symmetry-breaking bifurcation of branch I11 at 
a = 3.96". Branches IV and V are connected by a turning point at a = -0.95". 

As part of the effort to ensure that the observed solution multiplicities were not due 
to the method of discretizing the inertial terms, the computations described in the 
preceding paragraph were repeated using the divergence form of the inertial terms, (9). 
The diamonds in figure 11 are the results obtained using (9) while the solid lines are the 
results of using (7). Mesh M4 was used in both computations. Since the bifurcation 
diagram is substantially independent of whether the inertial terms were discretized 
using (7) or (9), the solution multiplicites are unlikely to be a numerical anomaly. 

Some comments can be made about the stability of these solutions based on the 
structure of the bifurcation diagram and the symmetry of the solution branches. First, 
recall that when doing Re continuation along branch I, the first bifurcation occurs at 
Re = 26.85. Thus, since the Stokes flow solution is stable, so is the Re = 20 branch I 
solution. Branch I11 must be unstable because the turning point between symmetric 
branches I and I11 is associated with an odd number of eigenvalues crossing the 
imaginary axis. Assume that the odd number is one. (This can be confirmed with the 
stability analysis.) Since both branches I and I11 are symmetric, the null vector of the 
Jacobian at the turning point must also be symmetric. Therefore, the unstable 
eigenmode of branch I11 is is symmetric with respect to the channel centreline. The 
symmetry-breaking bifurcation between branches I11 and IV is also associated with an 
eigenvalue crossing into the unstable half-plane. Since branch IV is asymmetric, the 
unstable eigenmode must be antisymmetric. Accordingly, one deduces that branch IV 
is unstable and that branch I11 is unstable to two eigenmodes, one symmetric, the other 
antisymmetric, for a between the symmetry-breaking bifurcation point of branch IV 
and the turning point between branches 11 and 111. As branches I1 and I11 are both 
symmetric, one can conclude that an eigenvalue affiliated with a symmetric mode has 
crossed the imaginary axis. However, without doing the stability calculations, one 
cannot ascertain whether this mode is the unstable mode of branch I11 passing back 
into the stable half-plane, or if branch I1 is unstable to two symmetric modes. 
Nevertheless, it is clear that branch I1 is unstable to the same antisymmetric mode as 
branch 111. So far as the stability of branch V is concerned, no information may be 
gained from the bifurcation diagram. Like the transition between branches I1 and 111, 
the turning point between branches IV and V may be due to the stabilizing of the 
unstable mode of branch IV, or due to a new eigenmode becoming unstable. Only the 
stability analysis will resolve this issue. 

By using Leray-Schauder degree theory, Benjamin (1978) has shown that at almost 
any parameter value there must be an odd number of solutions, k, and that at least 
( k -  1)/2 of these solutions must be unstable. We will call this Result I. Satisfying 
Result I does not prove that all of the solution branches have been found. On the other 
hand, failure to satisfy Result I is proof that there are undiscovered solution branches. 
At this point seven solutions have been found at (Re, a )  = (20,O"). Branches I, I1 and 
I11 are symmetric. Branches IV and V are associated with asymmetric solutions and 
therefore represent two solutions each. Only branch I is currently known to be stable. 
For every value of a, figure 11 is consistent with the requirements of Result I. 

Starting with the (Re,  a )  = (20, 0") solutions, the Reynolds number dependence of 
each solution branch is now considered. Figure 12 plots Y+ as a function of the 
Reynolds number for each of branches I-V. The curves for branches I, Ia, and Ib are 
the same as in figure 4. Branch I1 undergoes a symmetry-breaking bifurcation at 
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FIGURE 12. The bifurcation structure as Re is varied. A magnified view of the boxed region of the top 
panel is shown as an inset. Note that branch I1 connects to branch 111 via a turning point. Similarly, 
a turning point connects branches IV and V. 

Re = 28.3. This new asymmetric branch is labelled IIa. Similarly, branch I11 has a 
symmetry-breaking bifurcation at Re = 29.0 and again at Re = 33.5. These new 
branches are labelled IIIa and IIIb, respectively. The kink that appears on branch IV 
near Re = 35 shows up as a sigmoidal segment with two closely spaced (Re = 34.81 and 
35.25) turning points when mesh M3 is used and as a kink when meshes M2 and M4 
(shown) are used. As shown in the inset of the top panel of figure 12, as the Reynolds 
number is reduced below 20 one finds that branches I1 and I11 are connected by a 
turning point at Re = 18.83. Likewise, branch IV connects to branch V via a turning 
point at nearly the same value of the Reynolds number, Re = 18.88. As a consequence 
of these two turning points, branch I appears to be the unique set of solutions when 
the nozzles are horizontal and Re < 18.8. Finally, we note that the symmetry-breaking 
bifurcation points associated with branches Ia, Ib, IIa, IIIa, and IIIb were all verified 
by repeating these computations using the divergence form of the inertial terms, thus 
reinforcing the belief that the observed nonlinearities were not solely a consequence of 
the specific manner in which the inertial terms were discretized. 
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Stream-function critical point plots for branches 11, IIa, 111, IIIa, IIIb, IV, and V at 
a selection Reynolds numbers are shown in figure 13. Of interest is the common 
occurrence of saddle points in the stream-function topology. In fact, on branch IIIb at 
Re = 40, a figure-eight streamline is seen inside one lobe of another figure-eight 
streamline. Also note that the mid-channel saddle point is clearly associated with 
@ + 0 on branches IIIa and IV. Thus, as on branch Ia, the flow from one of the nozzles 
on both of these branches is divided into two streams that follow very different paths. 

It is important to recognize that solution branches I1 and 111, as well as IV and V, 
appear to be unconnected to the branch I solutions if one's view is limited to their 
Reynolds-number-based connectivity. However, continuation in the nozzle angle 
makes clear that all known solution branches can be connected by continuation in a 
single parameter. This suggests that one might learn more about the structure of the 
solution space by performing this type of continuation at other Reynolds numbers. 
Accordingly, this geometric continuation procedure was repeated starting with 
solutions Re = 18.75 and 31. 

Since the structure of the bifurcation diagrams is expected usually to have a 
continuous parametric dependence, one anticipates that the Re = 18.75 bifurcation 
diagram will look largely like the diagram at Re = 20, except that the turning points 
between branches 11 and 111, and between branches IV and V will occur at a positive 
value of a. Thus, the line a = 0" will not cross any of these four branches. Figure 14 
shows that this easily anticipated morphogenesis of the bifurcation diagrams is in fact 
correct. A magnified view of the boxed region of figure 14 is shown in the inset of the 
top panel, where it can be seen that the general structure of the bifurcation of branch 
IV from branch I11 is similar to that shown at Re = 20 in figure 11, except that branch 
IV exists only in the small range 0.12" < a < 0.21". 

At Re = 31, the solution-space structure is known to be richer, since all three 
symmetric branches have had exactly one symmetry-breaking bifurcation by this 
Reynolds number. The associated bifurcation diagrams are shown in figure 15. Careful 
comparison of figure 12 at Re = 31 with figure 15 at a = 0", shows that the two figures 
are completely consistent. The branches resulting from Reynolds-number-continuation 
symmetry-breaking bifurcations of branches I, 11, and I11 are all accounted for in 
figure 15 at a = 0". In addition, one observes, for example, that branch IIIa is 
connected to branch I11 by two symmetry-breaking bifurcations. Thus if one starts 
with the 01 = 0" branch IIIa solution and then either increases or decreases a 
sufficiently, the branch IIIa solution will degenerate to the branch I11 solution. Also 
note the loop in branch 111 near a = 8". Recall that branch I11 is symmetric. The loop 
indicates the presence of two additional symmetric branches (five in total) at this nozzle 
angle. In the next section, it will be argued that undiscovered symmetric branches must 
occur in pairs, as has happened on branch 111. 

We note that it is not unheard of to discover solution branches that are not 
connected to the principal solution branches by 'natural ' or obvious continuation 
parameters. In the context of the Taylor problem, Anson, Mullin & Cliffe (1989) have 
investigated so-called anomalous modes that are not connected to the Couette flow 
solution. 

There are several stability-related questions that still need settling. The number of 
unstable eigenmodes as well as the dominant instability of branch I1 are not resolved. 
It is not clear which of the two unstable branch I11 eigenmodes is most dangerous. 
Finally, the stability of branches IIa, IIIa, IIIb, and V is unknown. Attention will be 
restricted to the stability of solutions at 01 = 0". Consider first branches IIIa and IIIb. 
Both branches result from symmetry-breaking bifurcations of branch 111. Like the 
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FIGURE 13(a-c). For caption see page 74. 
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FIGURE 13(&f). For caption see next page. 

symmetry-breaking bifurcations of branches Ia and Ib from branch I, these bifurcations 
involve the eigenvalue of an antisymmetric eigenmode crossing the imaginary axis. The 
stability of symmetric eigenmodes is unaffected by the bifurcations. Accordingly, since 
branch I11 has an unstable symmetric eigenmode, then branches IIIa and IIIb must 



74 R.  T. Goodwin and W. R.  Schowalter 

k) Re = 20 

Re = 25 

c 
I \ 

Re = 40 

L 
0 - 

FIGURE 13. Stream functional critical point plots for branches II(a), IIa(b), III(c), IIIa(d), 
IIIb(e), IV(f), and V(g). 

also be unstable (though the unstable eigenmode has no special symmetry properties). 
Figure 16 shows the most dangerous eigenvalues as a function of the Reynolds number 
for branches I1 and 111. The most dangerous eigenmodes for branch I11 are purely real 
for R e G 4 0 .  In the range 33.5 5 R e G 4 0 ,  the most dangerous eigenmode is 
antisymmetric. Below Re FZ 33.5 until the turning point to branch 11, the most 
dangerous eigenmode of branch I11 is symmetric. At the turning point between 
branches I1 and 111, the eigenvalue associated with the symmetric eigenmode passes 
into the stable half-plane. Thus, as shown in figure 16, branch I1 is unstable to the same 
antisymmetric mode as branch 111. Since branch I1 is unstable to an antisymmetric 
mode, the stability of branch IIa cannot be determined from symmetry considerations. 
The stability analysis shows that the eigenvalue associated with a second real 
antisymmetric eigenmode crosses into the unstable half-plane when branch IIa 
bifurcates from branch 11. Therefore branch IIa is unstable. Figure 17 shows the 
Reynolds-number dependence of the eigenvalues for the two fastest growing modes of 
branch IV near the turning point to branch V. Both eigenmodes are purely real. One 
mode is unstable, the other decays. At the turning point between branches IV and V, 
these two real modes combine to form a pair of stable oscillatory modes. Thus, branch 
V is shown to be a stable branch. There are therefore three stable solutions in the range 
18.83 < Re < 26.85, the branch I solution and the pair of mirror-image solutions of 
branch V. In the range 26.85 < Re < 40, there are four stable solutions, the branch Ia 
solutions and the branch V solutions. Note that the solutions on both branch Ia and 
branch V are asymmetric. 

Finally, many of the results of this section can be obtained by other forms of 
symmetry-preserving geometric continuation. For example, the transitions between the 
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FIGURE 14. Bifurcation diagram for symmetric nozzle angle variation at Re = 18.75. An enlarged 
view of the boxed region of the top panel is presented as an inset. Note that the turning points between 
branches I1 and I11 and between branches IV and V occurs at u > 0" and that therefore these branches 
do not exist when the inlet nozzles are horizontal. 

symmetric branches, I, I1 and I11 at Re = 20 have been effected by varying the width 
of the channel while preserving the positions of the nozzles with respect to the channel 
centreline. The physical motivation for this procedure was to attempt to modulate the 
strength of the interactions between the two jets compared to the strength of the 
interaction of either jet with the nearest channel wall. It seems likely however that 
results concerning a variable-width channel are less amenable to experimental 
verification than are results for a channel with tilting inlet nozzles. 

3.4. Parallel nozzle angle variation 
Recall that the bifurcation diagram, figure 12, satisfies Result I at each value of the 
Reynolds number. Counting mirror-image flows individually, this gives a total of 17 
known solutions at Re = 40. Of these, only the two pairs of asymmetric solutions 
associated with branches Ia and V are linearly stable to two-dimensional disturbances. 
While satisfaction of Result I is gratifying, it should be emphasized that this does not 
prove that all of the steady solutions to this problem have been found. 
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FIGURE 15. Bifurcation diagram for symmetric nozzle angle variation at Re = 31. 

It is however possible to demonstrate that all of the known solutions can be divided 
into a small number of families (two). More importantly, the process of dividing the 
known solutions into families will systematically find every as-yet-unidentified member 
of each family of solutions. (To avoid confusion, these families are not the families of 
solutions connected or not connected to the Stokes flow solution, referred to earlier.) 

To identify the families of solutions, a variant of the procedure for changing solution 
branches by changing the angle of the inflow nozzles is used. Previously, the nozzles 
were moved in a fashion that maintained the symmetry of the problem specification. 
That restriction is now altered, instead requiring that a, = 01~. Thus, the nozzles are 
moved in a way that causes their axes to remain parallel. The symmetry of the problem 
forrnulation is broken whenever a =I= 0". Attention is focused on the a = 0" solutions 
that are encountered using this style of geometric continuation. (As before, the 
subscripts on 01 are omitted.) 

Consider the form of a continuation diagram of a versus Y,. Suppose one starts 
with a symmetric solution, say the branch I Re = 20 solution, and then increases a. 
This will result in an asymmetric flow. If, instead, a had been decreased by the same 
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FIGURE 16. Most dangerous eigenvalues for branches I1 and 111. At the turning point from branch 
111 to branch 11, the eigenvalue associated with the symmetric eigenmode passes into the stable half- 
plane, while the eigenvalue associated with asymmetric eigenmode remains unstable. 
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FIGURE 17. The two most dangerous eigenvalues for branch IV. At the turning point from branch IV 
to branch V, the two real eigenvalues combine to form a stable complex-conjugate pair. 

amount, one would find the mirror-image flow, since the starting solution is symmetric. 
Clearly, the continuation diagram is symmetric about the line a = 0". 

The procedure is therefore to start with a symmetric solution at a fixed Reynolds 
number and then to increase a. At some point, either a turning point will be 
encountered and therefore a must be decreased, or the physical limit of a = 90" will be 
reached. (In practice the limit of a = 90" is never reached since the elements discretizing 
the nozzle become excessively distorted at very large nozzle angles. Continuation was 
typically terminated at a x 80O.) If a = 90" is reached, then the starting solution is the 
only member of this family of solutions. (To be clear, the members of the family are 
restricted to only those solutions, symmetric or asymmetric, that exist when the nozzles 
are horizontal, i.e. when a = 0". Thus, while there is a continuum of solutions as a is 
varied, attention is confined to solutions to the symmetric, a = 0", problem.) If a 
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FIGURE 18. Bifurcation diagram for parallel nozzle angle variation at Re = 20. 

turning point is encountered, then one is at the start of a potentially long continuation 
path that has perhaps many turning points, and that could pass many times through 
a = 0". There are only two eventualities for this continuation path. The first is that a 
reaches +90" and thus, as before, all of the solutions have been found. The complete 
set of solutions to the symmetric problem (for this family) is found by cataloguing all 
of the crossings of the line a = 0". Except for the crossing due to the initial symmetric 
solution, each crossing of the line a = 0" represents one of a pair of mirror-image 
asymmetric solutions. Thus, the total number of solutions in this family is odd. The 
other, more interesting, possibility is that the solution trajectory returns to a different 
symmetric solution at a = 0". In this case, the mirror-image path will be traced back 
to the starting symmetric solution. Thus, a closed loop is formed. Again, the places 
where the solution trajectory crosses a = 0" comprise the members of this family of 
solutions to the symmetric problem. In this case, the total number of solutions in the 
family is even. Note that while a continuous path may cross the line a = 0" many times, 
at least one, and at most two, of those crossings correspond to symmetric solutions. 
Furthermore, if a closed-loop family of solutions is found, then to satisfy Result I, a 
family of solutions must exist that terminates at a = +90". 

Careful consideration of the implications of using this form of continuation, along 
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FIGURE 19. Bifurcation diagram for parallel for parallel nozzle angle variation at Re = 27. The inset 
of (a) shows that both branches I and Ia are found near !K = 35. The inset of (b) shows that the 
a = 0" crossing associated with branch I1 does so with zero slope, as would be expected for a symmetric 
branch. 

with the requirement that the total number of solution branches is odd, allows one to 
draw conclusions about the number and symmetry of any undiscovered solutions. 
First, note that if a new branch of solutions is found, then it must belong to a new 
family of solution branches, since, as has been shown, the continuation procedure 
systematically reveals all members of the known families. Next, observe that all 
solution families are either of the closed-loop variety, with an even number of family 
members, or of the open-ended variety (called this because the continuation path 
terminates at 01 = +90°) with an odd number of family members. Suppose the newly 
discovered branch is symmetric. If it is a member of an open-ended family, then once 
all of the members of this new family have been found, the total number of members 
of all families will be even, and this is forbidden. Therefore, there must be another 
open-ended family of solutions. Moreover, this family must contain one member that 
is a symmetric solution. Suppose instead that the new symmetric solution belonged to 
a closed-loop family. In this case, the new family has a second symmetric member. 
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FIGURE 20. Stream-function critical point plots for branches VI(u), VII(b), VIII(c), and IX(d). 
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Also, since closed-loop families have an even number of members, the requirement that 
the total number of solutions be odd is satisfied. Thus, if the newly found solution is 
symmetric, then there must be another missing symmetric solution. A similar line of 
reasoning applied to newly discovered asymmetric solutions leads to the conclusion 
that for this case also, one must find a new pair of symmetric solutions. In short, if 
there are any as-yet-undiscovered solutions, then at least two of them are symmetric 
solutions. Moreover, the total number of missing symmetric solutions must be even. 
Obviously, since asymmetric solutions occur in mirror-image pairs, the total number 
of missing asymmetric branches must also be even. 

This continuation procedure has been used at Re = 20,27 and 40. At each Reynolds 
number, the solution branches segregate into two families. One family is of the closed- 
loop type and contains symmetric branches I and 111. The other family is open-ended 
and is associated with symmetric branch 11. 

Figure 18 shows the continuation diagrams at Re = 20. Since the problem 
formulation, and therefore the solutions, cannot be symmetric if a =i= 0", only u/_ is 
shown. Figure 18 (a) shows the closed-loop family. This family of solutions crosses the 
a = 0" line four times. There is one crossing for each of branches I and I11 and one 
crossing for each of the branch IV solutions. Similarly, in figure Is@), there is a total 
of three a = 0" crossings ; once for branch I1 and once for each mirror-image of branch 
V. Note that the total number of crossings, seven, is consistent with the earlier findings 
about the number of solutions at Re = 20 with the nozzles horizontal. 

The continuation diagram for Re = 27 is shown in figure 19. At this Reynolds 
number, only branch I has undergone a symmetry-breaking bifurcation. The aim is to 
determine if branch Ia is associated with either of the two known families, or with a 
new family. The inset in figure 19(a), a close-up view of figure 19(a) in the vicinity of 
!P- = 35, a = 0", shows that branch Ia is a member of the closed-loop family of 
solutions. Once again, the total number of crossings in the closed-loop and open-ended 
families of solutions demonstrates that all previously known solution branches have 
been accounted for, and no new solution branches have been found. 

When this procedure was repeated at Re = 40, there were eight more crossings in the 
closed-loop family than could be accounted for based on the known solution branches. 
These new crossings are due to four previously unseen asymmetric branches. The new 
branches are labelled VI-IX. As before, the open-ended family has crossings due to 
branches I1 and V. In addition, there is a pair of crossings associated with branch IIa. 
The Reynolds number dependence of all solution branches is shown in figure 12. 
Branches VI and VII connect via a Reynolds number turning point at Re = 36.5. 
Similarly, branches VIII and IX connect by a turning point at Re = 39.9. (The fictitious 
turning point mentioned earlier connects branches VII and IX, and vanishes if the 
mesh is sufficiently fine.) Like branches 11, 111, IV and V, branches VI-IX are not 
connected to the Stokes flow solution via continuation in Re. It would not be surprising 
to learn that branches VI-IX connect with the other solution branches via symmetric 
nozzle angle continuation. However, this has not been verified. Stream-function critical 
point plots of branches VI-IX at Re = 40 and 50 are shown in figure 20. In the light 
of the facts that the eigenvalue calculations are excessively expensive for meshes finer 
than M2 and that reliable solutions for branches VI-IX could not be obtained on grids 
M1 or M2, the stability calculations have not been made for these solution branches. 
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4. Summary 
A computational study of the base-state and two-dimensional linear stability of the 

flow in a semi-infinite channel driven by the side-by-side injection from two jet-like 
nozzles into the otherwise closed end of the channel has been presented. The problem 
formulation is symmetric with respect to the channel centreline. Multiple symmetry- 
breaking bifurcations of the branch of solutions connected to the Stokes flow solution 
occur as the Reynolds number is increased with the nozzle axes parallel with the 
channel axis. The preliminary calculations beyond Re = 40 suggest that the symmetric 
branches will continue to undergo symmetry breaking as the Reynolds number is 
increased. It was also shown that by manipulating the angles of the nozzles, one could 
access several branches of solutions not connected to the Stokes flow solution. Of 
particular interest is the fact that the number of these disconnected branches also seems 
to increase as the Reynolds number is raised. Of note is that one of these solution 
branches, branch V, is a stable branch. It is not obvious from this work how one might 
access branch V experimentally since all numerical avenues traverse unstable branches. 

The full implications of these calculations for an experimentalist are unclear. There 
are, however, indications that the observed flow may be extremely sensitive to small 
variations in the channel geometry or in the way an experiment is conducted. For 
example, when the nozzles were moved symmetrically at Re = 20, the turning points 
between branches I1 and I11 and between branches IV and V were close to a = 0". (See 
figure 11 .) This suggests that seemingly minor misadjustments of the nozzles may 
inadvertently cause experimentally determined bifurcation diagrams to vary sign- 
ificantly from those shown here. 
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